

Shawn Salisbury Idaho National Laboratory

TRB 97th Annual Meeting January 11th, 2018

Charging Infrastructure Needs are Changing

- Profitability of current fast charging infrastructure is challenging
 - High capital and operational costs
- Battery electric vehicles (BEVs) with larger battery packs, longer ranges are being introduced at mass-market prices
- Consumers are accustomed to gasoline refueling experience
 - 10-15 minutes at gas station
 - Faster charging may be needed

 This project studied the design and costs of high-power, multi-port DC fast charging complexes that provide gas station-like experiences

Line Voltage

DCFC Complex Design Considerations

- DCFC complex expected to include components similar to those shown
- Component size may vary for urban vs. rural complexes

Component order may vary by utility

DCFC Complex Design Considerations

- On-site energy storage (ES) and photovoltaic (PV) solar generation decouples power/energy provided to vehicles from power/energy drawn from the grid
 - Reduces electricity costs and grid impact
 - Increases installation and maintenance costs

Line Voltage4kV to 35kV AC 480V AC

High Voltage DC (e.g. 1,000V DC)

Upgradability

- Complex may be designed to accommodate upgrades to higher capacity
- Portions of site can be sized for future power expansion on initial install
 - Choose component size so surface/underground work (trenching, conduit, paving) only needs to be done once
 - Concrete pads, transformer vault sized for higher power to reduce cost, ensure adequate expansion space

Strategy to upgrade to higher power without ES and PV

6 x 50 kW DCFC units installed but site constructed to support 6 x 350 kW units

A) DCFC complex with 50-kW chargers and no ES and PV systems

Components upgraded for 6 x 350 kW DCFC units

Design Case Studies for Cost Estimation

- Designs were chosen for hypothetical DCFC complexes
- "Minimum" and "Ultimate" capability requirements were specified to approximate short-term and future scenarios
- Different usage and cost assumptions for "Urban" and "Rural" complexes

	Minimum Capability	Ultimate Capability
# of Charge Units	6 charge units	6 charge units
Charge Power	50 kW	350 kW
Grid Power Supply w/o Energy Storage	160 kW	1,060 kW
Grid Power Supply w/ Energy Storage	110 kW	210 kW

Cost Comparison

- Developed ROM cost estimates for station capital cost and operating cost
- Given the assumptions used,
 - For minimum capability, it is more cost-effective without ES and PV
 - For ultimate capability, it is cheaper to use ES and PV and keep grid power low

Minimum Capability – Six 50 kW						
		Rural Corridor		Urban Community		
Design Configuration	Maximum Grid Power (kW)	Capital Cost	Annual Operating Cost	Capital Cost	Annual Operating Cost	
With ES and PV	110	\$574,500	\$170,600	\$502,000	\$163,000	
Without ES and PV	160	\$392,000	\$170,700	\$385,500	\$165,500	
Difference		-\$182,500	\$100	-\$116,500	\$2,500	

Does not pay back

Does not pay back

Ultimate Capability – Six 350 kW						
		Rural Corridor		Urban Community		
Design Configuration	Maximum Grid Power (kW)	Capital Cost	Annual Operating Cost	Capital Cost	Annual Operating Cost	
With ES and PV	210	\$2,030,500	\$389,000	\$1,636,500	\$343,000	
Without ES and PV	1,060	\$1,728,000	\$514,500	\$1,721,500	\$500,500	
Difference		-\$302,500	\$125,500	\$85,000	\$157,500	

Business Case Analysis

- Cases for urban and rural complexes using 50 kW and 350 kW chargers were analyzed using tool developed by Atlas Public Policy
- In the cases studied, break-even cost per kWh was calculated:

Financing Period	Customer Cost metric	Minimum Rural Six 50-kW	Minimum Urban Six 50-kW	Ultimate Rural Six 350-kW	Ultimate Urban Six 350-kW
5 Years	Electricity Cost (\$/kWh)	\$0.88	\$0.93	\$1.04	\$1.01
	Equivalent Gasoline Cost (\$/gal)*	\$7.54	\$7.91	\$8.91	\$8.65
10 Years	Electricity Cost (\$/kWh)	\$0.69	\$0.73	\$0.77	\$0.76
	Equivalent Gasoline Cost (\$/gal)*	\$5.91	\$6.25	\$6.60	\$6.51

^{*} Based on 30 mpg vehicle

- Other revenue streams may be necessary
 - On-site sales (e.g. gas station model)
 - Investment through public and/or private partnership.

*** CAUTION ***

Refinement of assumptions and design optimization strongly recommended

Currently Underway: Phase 2 with NREL

- Building on work done in this project, with a more refined and rigorous approach
 - Data-driven fast charger usage predictions
 - Considering varied electric utility rate structures using URDB
 - Investigating cost reduction methods
- NREL using ReOpt tool to find optimum station designs given different usage patterns and rate structures
 - Energy storage systems
 - PV solar systems
 - Colocation of charging sites with existing building loads
- Further analysis of business case using alternative revenue streams

Thank you!

For More Information: Shawn.Salisbury@inl.gov

Full Report Available: https://avt.inl.gov